metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(2-carboxybenzoato- κO^1)bis[1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-4ium-1-yl)-1,4-dihydroguinoline-3carboxylato- $\kappa^2 O^3$, O^4]manganese(II) dihydrate

Guang-Ju Zhang,* Jiang-Hong He, Shi-Wei Yan, Dian-Zhen Sun and Hai-Yan Chen

College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, People's Republic of China Correspondence e-mail: guaiguaijuzi@yahoo.com.cn

Received 20 January 2011; accepted 29 March 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.051; wR factor = 0.145; data-to-parameter ratio = 15.7.

The title compound, $[Mn(C_{17}H_{18}FN_3O_3)_2(C_8H_5O_4)_2] \cdot 2H_2O$ or $[Mn(cfH)_2(1,2-Hbdc)_2]\cdot 2H_2O$ (cfH = ciprofloxacin = 1-cyclo propyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinoline carboxylic acid, 1,2-bdc = benzene-1,2-dicarboxylate), has been prepared under hydrothermal conditions. The Mn²⁺ atom, located on an inversion centre, exhibits a distorted octahedral geometry, coordinated by four O atoms from two symmetry-related zwitterionic ciprofloxacin ligands in the equatorial positions and two O atoms of two 1,2-Hbdc ligands in the axial positions. The complex molecules are linked into a two-dimensional network through N-H···O and OW-H...O hydrogen bonds. A strong intramolecular hydrogen bond between the carboxyl/carboxylate groups of the 1,2-Hbdc anion is also present. The layers are further extended through off-set aromatic π - π stacking interactions of cfH groups [centroid–centroid distance of 3.657 (2) Å] into the final three-dimensional supramolecular arrays.

Related literature

For background to the antibiotic drug ciprofloxacin, see: Turel (2002); Xiao et al. (2005). The mechanisms of action of the quinolone antibacterial agents are either their inhibition of DNA gyrase (Topoisomerase II) or their interaction with the DNA molecule via a metal complex intermediate, see: Chulvi et al. (1991); Ruiz et al. (1993); Wallis et al. (1995). For related structures, see: Fabbiani & Dittrich (2008); Wang et al. (2009).

 $\beta = 98.44 \ (3)^{\circ}$

Z = 2

V = 2409.9 (8) Å³

Mo $K\alpha$ radiation

 $0.58 \times 0.47 \times 0.32$ mm

22913 measured reflections

5494 independent reflections

3555 reflections with $I > 2\sigma(I)$

 $\mu = 0.36 \text{ mm}^-$

T = 293 K

 $R_{\rm int} = 0.068$

Experimental

Crystal data

[Mn(C₁₇H₁₈FN₃O₃)₂(C₈H₅O₄)₂]-- $2H_2O$ $M_r = 1083.90$ Monoclinic, $P2_1/n$ a = 9.4510 (19) Åb = 22.042 (4) Å c = 11.695 (2) Å

Data collection

Rigaku R-AXIS RAPID IP diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\rm min}=0.817,\;T_{\rm max}=0.893$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.051$	H atoms treated by a mixture of
$wR(F^2) = 0.145$	independent and constrained
S = 1.00	refinement
5494 reflections	$\Delta \rho_{\rm max} = 0.45 \ {\rm e} \ {\rm \AA}^{-3}$
350 parameters	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$
10 restraints	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
OW1−HW1B···O5	0.84 (3)	2.43 (3)	3.108 (4)	139 (4)
$N1 - H1A \cdots O7^{i}$	0.90	1.82	2.717 (3)	174
$N1 - H1B \cdot \cdot \cdot O1^{ii}$	0.90	1.79	2.688 (3)	173
$N1 - H1B \cdot \cdot \cdot O2^{ii}$	0.90	2.60	3.246 (3)	130
OW1−HW1A···O3 ⁱⁱⁱ	0.84 (3)	2.12 (1)	2.937 (3)	164 (4)
O6−H6···O5	0.85 (4)	1.53 (4)	2.379 (4)	175 (8)

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (ii) x + 1, y, z + 1; (iii) -x, -y, -z + 1.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Science and Technology Foundation of Southwest University (SWUB2007035).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VM2075).

References

Chulvi, C., Muñoz, M. C., Perelló, L., Ortiz, R., Arriortua, M. I., Via, J., Urtiaga, K., Amigó, J. M. & Ochando, L. E. (1991). *J. Inorg. Biochem.* 42, 133–138. Fabbiani, F. P. A. & Dittrich, B. (2008). Acta Cryst. E64, o2354-o2355.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Ruiz, M., Ortiz, R., Perello, L., Castñeiras, A. & Quirós, M. (1993). Inorg. Chim. Acta, 211, 133–139.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Turel, I. (2002). Coord. Chem. Rev. 232, 27-47.
- Wallis, S. C., Gahan, L. R., Charles, B. G. & Hambley, T. W. (1995). *Polyhedron*, **14**, 2835–2840.
- Wang, Y.-J., Wang, N., Hu, R.-D., Lin, Q.-Y. & Wang, Y.-Y. (2009). Acta Cryst. E65, m783.
- Xiao, D. R., Wang, E. B., An, H. Y., Su, Z. M., Li, Y. G., Gao, L., Sun, C. Y. & Lin, X. (2005). *Chem. Eur. J.* **11**, 6673–6686.

Acta Cryst. (2011). E67, m538-m539 [doi:10.1107/S1600536811011615]

Bis(2-carboxybenzoato- κO^1)bis[1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-4-ium-1-yl)-1,4-dihydroquinoline-3-carboxylato- $\kappa^2 O^3, O^4$]manganese(II) dihydrate

G.-J. Zhang, J.-H. He, S.-W. Yan, D.-Z. Sun and H.-Y. Chen

Comment

Ciprofloxacin [cfH = 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinoline carboxylic acid] belongs to the quinolone family of synthetic antibiotics (Turel, 2002; Xiao *et al.*, 2005) and is a third generation quinolone antibacterial drug with broad-spectrum antibacterial activity (especially aerobic gram-negative bacilli high antibacterial activity). The mechanisms of action of the quinolone antibacterial agents are either their inhibition of DNA gyrase (Topoisomerase II), an essential bacterial enzyme that maintains superhelical twists in DNA, or their interaction with the DNA molecule *via* a metal complex intermediate (Chulvi *et al.*, 1991; Ruiz *et al.*, 1993; Wallis *et al.*, 1995).

The Ciprofloxacin and its deprotonated anions can show a number of different coordinating or bridging modes. The title complex consists of a Mn^{2+} atom lying on an inversion center, two Ciprofloxacin ligands, two 1,2-benzenedicarboxylate ligands (1,2-bdc) and a water molecule (Fig. 1). The Ciprofloxacin ligand acts as chelating bidentate and the Mn(II) atom is coordinated by four oxygen atoms from two different Ciprofloxacin ligands and two oxygen atoms from two 1,2-bdc ligands. The N—H…O and OW—H…O hydrogen bonds link the discrete molecules into two-dimensional arrays (Table 1). These two-dimensional layers are further extended through off-set aromatic π — π stacking interplanar of cfH groups (centroid distance of 3.657 Å) into the final three-dimensional supramolecular arrays (Fig. 2).

Experimental

A mixture of $Mn(OAc)_2.4H_2O(0.5 \text{ mmol})$, ciprofloxacin hydrochloride (0.25 mmol), 1,2-KHbdc (0.5 mmol), and water (7 ml) was stirred for 30 min in air (solution pH = 4.0), then transferred and sealed in an 18 ml Teflon-lined autoclave, which was heated at 110 °C for 96 h. After slow cooling to room temperature, yellow block crystals were filtered off, washed with distilled water, and dried at ambient temperature.

Refinement

The structure was solved by direct methods and successive Fourier difference synthesis. The H atoms bonded to C or N atoms were positioned geometrically and refined using a riding model [aromatic C—H = 0.93 Å, aliphatic C—H = 0.97 – 0.98 Å and N—H = 0.90 Å, $U_{iso}(H) = 1.2U_{eq}(C)$ and $U_{iso}(H) = 1.2U_{eq}(N)$]. The H atoms bonded to OW atoms were located in a difference Fourier maps and refined with OW—H = 0.84 Å and $U_{iso}(H) = 1.3U_{eq}(OW)$.

Figures

Fig. 1. *ORTEP* drawing of 1 with thermal ellipsoids at 30% probability. Symmetry code (i): - x, -y, -z+1.

Fig. 2. Perspective view of the three-dimensional supramolecular network in 1. The hydrogen bonds are indicated by pink dotted lines while the aromatic π --- π stacking interaction is indicated by a green dotted line.

$Bis(2-carboxybenzoato-\kappa O^{1})bis[1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-4-ium-1-yl)-1,4-dihydroquinoline-3-carboxylato-\kappa^{2}O^{3},O^{4}]manganese(II) dihydrate$

$[Mn(C_{17}H_{18}FN_{3}O_{3})_{2}(C_{8}H_{5}O_{4})_{2}]\cdot 2H_{2}O$	F(000) = 1126
$M_r = 1083.90$	$D_{\rm x} = 1.494 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 22913 reflections
a = 9.4510 (19) Å	$\theta = 3.1 - 27.5^{\circ}$
b = 22.042 (4) Å	$\mu = 0.36 \text{ mm}^{-1}$
c = 11.695 (2) Å	T = 293 K
$\beta = 98.44 \ (3)^{\circ}$	Block, yellow
$V = 2409.9 (8) \text{ Å}^3$	$0.58 \times 0.47 \times 0.32 \text{ mm}$
Z = 2	

Data collection

Rigaku R-AXIS RAPID IP diffractometer	5494 independent reflections
Radiation source: fine-focus sealed tube	3555 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.068$
Detector resolution: 100x100 microns pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
Oscillation scans	$h = -12 \rightarrow 12$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$k = -28 \rightarrow 27$
$T_{\min} = 0.817, \ T_{\max} = 0.893$	$l = -14 \rightarrow 15$
22913 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.051$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.145$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.00	$w = 1/[\sigma^2(F_0^2) + (0.080P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$
5494 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
350 parameters	$\Delta \rho_{max} = 0.45 \text{ e} \text{ Å}^{-3}$
10 restraints	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

E		1:					1:	1		1 82	í٦
ггаспопаі	atomic	coorainales	ana isoirc	pic or e	quivaieni	sotropic	aispi	lacement	parameters	(A	1

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Mn1	0.0000	0.0000	0.5000	0.02941 (16)
F1	0.36711 (17)	-0.03305 (7)	1.05085 (13)	0.0405 (4)
O1	-0.3533 (2)	0.08833 (10)	0.61415 (16)	0.0463 (5)
OW1	-0.1255 (4)	0.13296 (13)	0.2728 (2)	0.0820 (9)
HW1A	-0.094 (5)	0.0991 (10)	0.298 (3)	0.110*
HW1B	-0.138 (5)	0.1555 (15)	0.328 (2)	0.109*
O2	-0.20086 (19)	0.03315 (9)	0.53302 (15)	0.0357 (4)
O3	0.0395 (2)	-0.00587 (8)	0.68591 (15)	0.0343 (4)
O4	0.0782 (2)	0.09397 (9)	0.50461 (18)	0.0439 (5)
O5	-0.0132 (3)	0.18400 (11)	0.5170 (2)	0.0750 (8)
O6	-0.0126 (4)	0.26486 (14)	0.6518 (3)	0.1005 (12)
O7	0.0876 (4)	0.28742 (12)	0.8236 (3)	0.0931 (11)
N1	0.5198 (2)	0.10018 (9)	1.39405 (17)	0.0314 (5)
H1A	0.5482	0.1366	1.3711	0.038*
H1B	0.5652	0.0931	1.4660	0.038*
N2	0.3244 (2)	0.06259 (10)	1.19684 (17)	0.0305 (5)
N3	-0.0836 (2)	0.12018 (9)	0.91028 (17)	0.0298 (5)

C1	-0.2347 (3)	0.06311 (11)	0.6166 (2)	0.0295 (5)
C2	-0.1306 (3)	0.06868 (11)	0.7272 (2)	0.0276 (5)
C3	-0.0053 (3)	0.03176 (11)	0.75371 (19)	0.0259 (5)
C4	0.0734 (2)	0.03979 (11)	0.8693 (2)	0.0259 (5)
C5	0.1887 (3)	0.00113 (11)	0.9079 (2)	0.0286 (5)
H5A	0.2133	-0.0297	0.8601	0.034*
C6	0.2637 (3)	0.00873 (11)	1.0142 (2)	0.0285 (5)
C7	0.2384 (3)	0.05589 (11)	1.0898 (2)	0.0277 (5)
C8	0.1208 (3)	0.09297 (11)	1.0534 (2)	0.0298 (5)
H8A	0.0973	0.1239	1.1015	0.036*
С9	0.0374 (3)	0.08415 (11)	0.9447 (2)	0.0259 (5)
C10	-0.1624 (3)	0.10961 (12)	0.8066 (2)	0.0315 (5)
H10A	-0.2456	0.1322	0.7878	0.038*
C11	-0.1357 (3)	0.16131 (13)	0.9927 (2)	0.0404 (6)
H11A	-0.1788	0.1415	1.0542	0.048*
C12	-0.0615 (4)	0.21907 (14)	1.0259 (3)	0.0578 (9)
H12A	0.0223	0.2289	0.9906	0.069*
H12B	-0.0577	0.2326	1.1052	0.069*
C13	-0.2032 (4)	0.21968 (15)	0.9507 (3)	0.0606 (10)
H13A	-0.2854	0.2334	0.9844	0.073*
H13B	-0.2054	0.2297	0.8697	0.073*
C14	0.4800 (3)	0.06480 (13)	1.1950 (2)	0.0358 (6)
H14A	0.5066	0.1044	1.1691	0.043*
H14B	0.5065	0.0346	1.1416	0.043*
C15	0.5581 (3)	0.05253 (13)	1.3150 (2)	0.0384 (6)
H15A	0.5314	0.0130	1.3412	0.046*
H15B	0.6606	0.0527	1.3140	0.046*
C16	0.3629 (3)	0.10097 (13)	1.3950 (2)	0.0346 (6)
H16A	0.3392	0.1339	1.4439	0.041*
H16B	0.3341	0.0632	1.4276	0.041*
C17	0.2812 (3)	0.10894 (13)	1.2747 (2)	0.0349 (6)
H17A	0.1793	0.1057	1.2772	0.042*
H17B	0.2999	0.1489	1.2457	0.042*
C18	0.0744 (3)	0.14291 (12)	0.5553 (2)	0.0376 (6)
C19	0.1798 (3)	0.15346 (11)	0.6640 (2)	0.0321 (6)
C20	0.2873 (3)	0.10976 (13)	0.6846 (3)	0.0399 (6)
H20A	0.2873	0.0778	0.6327	0.048*
C21	0.3928 (4)	0.11212 (16)	0.7781 (3)	0.0531 (8)
H21A	0.4638	0.0826	0.7883	0.064*
C22	0.3934 (4)	0.15842 (18)	0.8571 (3)	0.0626 (10)
H22A	0.4640	0.1601	0.9214	0.075*
C23	0.2886 (4)	0.20213 (16)	0.8400 (3)	0.0573 (9)
H23A	0.2890	0.2330	0.8943	0.069*
C24	0.1812 (3)	0.20172 (12)	0.7437 (2)	0.0394 (6)
C25	0.0795 (4)	0.25462 (14)	0.7399 (3)	0.0562 (9)
Н6	-0.017 (6)	0.2366 (18)	0.602 (4)	0.13 (2)*
	· /	· /	5 Z	· /

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mn1	0.0300 (3)	0.0375 (3)	0.0188 (3)	0.0027 (2)	-0.0029 (2)	-0.0051 (2)
F1	0.0374 (8)	0.0479 (9)	0.0314 (8)	0.0147 (7)	-0.0111 (7)	-0.0025 (7)
01	0.0317 (10)	0.0791 (15)	0.0242 (10)	0.0190 (10)	-0.0087 (8)	-0.0106 (9)
OW1	0.122 (3)	0.0689 (17)	0.0486 (16)	0.0195 (17)	-0.0109 (16)	0.0000 (13)
02	0.0290 (9)	0.0515 (11)	0.0236 (9)	0.0050 (8)	-0.0064 (7)	-0.0084 (8)
03	0.0407 (10)	0.0397 (10)	0.0193 (9)	0.0100 (8)	-0.0059 (7)	-0.0051 (7)
04	0.0489 (12)	0.0417 (11)	0.0405 (12)	-0.0045 (9)	0.0045 (9)	-0.0119 (8)
05	0.0855 (19)	0.0603 (15)	0.0650 (17)	0.0255 (14)	-0.0361 (14)	-0.0108 (12)
06	0.115 (3)	0.0683 (19)	0.106 (3)	0.0507 (19)	-0.027 (2)	-0.0308 (18)
07	0.152 (3)	0.0554 (15)	0.073 (2)	0.0280 (18)	0.021 (2)	-0.0228 (14)
N1	0.0332 (11)	0.0370 (11)	0.0207 (10)	-0.0053 (9)	-0.0077 (8)	0.0009 (8)
N2	0.0263 (10)	0.0451 (12)	0.0178 (10)	0.0021 (9)	-0.0045 (8)	-0.0056 (8)
N3	0.0305 (11)	0.0366 (11)	0.0204 (10)	0.0057 (9)	-0.0021 (8)	-0.0045 (8)
C1	0.0260 (12)	0.0396 (13)	0.0200 (12)	0.0012 (10)	-0.0056 (10)	-0.0004 (9)
C2	0.0255 (12)	0.0378 (13)	0.0177 (11)	0.0011 (10)	-0.0032 (9)	-0.0009 (9)
C3	0.0263 (12)	0.0325 (12)	0.0171 (11)	-0.0031 (10)	-0.0023 (9)	0.0015 (9)
C4	0.0241 (11)	0.0351 (12)	0.0171 (11)	-0.0007 (10)	-0.0019 (9)	0.0005 (9)
C5	0.0282 (12)	0.0336 (12)	0.0226 (12)	0.0043 (11)	-0.0015 (9)	-0.0034 (10)
C6	0.0242 (11)	0.0358 (13)	0.0242 (12)	0.0051 (10)	-0.0011 (9)	0.0029 (9)
C7	0.0247 (12)	0.0385 (13)	0.0176 (11)	-0.0020 (10)	-0.0041 (9)	0.0016 (9)
C8	0.0295 (12)	0.0390 (13)	0.0192 (12)	0.0026 (11)	-0.0019 (10)	-0.0051 (9)
C9	0.0254 (11)	0.0316 (12)	0.0193 (11)	0.0011 (10)	-0.0018 (9)	0.0000 (9)
C10	0.0268 (12)	0.0401 (13)	0.0253 (13)	0.0049 (11)	-0.0040 (10)	0.0004 (10)
C11	0.0410 (15)	0.0462 (16)	0.0326 (15)	0.0093 (13)	0.0010 (12)	-0.0077 (12)
C12	0.068 (2)	0.0489 (18)	0.052 (2)	0.0073 (17)	-0.0037 (17)	-0.0163 (15)
C13	0.073 (2)	0.0552 (19)	0.050 (2)	0.0284 (18)	-0.0030 (18)	-0.0135 (15)
C14	0.0240 (12)	0.0563 (17)	0.0253 (13)	-0.0002 (11)	-0.0023 (10)	-0.0054 (11)
C15	0.0285 (13)	0.0539 (17)	0.0298 (14)	0.0020 (12)	-0.0053 (11)	-0.0067 (12)
C16	0.0343 (14)	0.0467 (15)	0.0211 (13)	-0.0018 (12)	-0.0011 (11)	-0.0045 (10)
C17	0.0279 (12)	0.0505 (15)	0.0235 (13)	0.0024 (11)	-0.0050 (10)	-0.0080 (11)
C18	0.0369 (14)	0.0368 (14)	0.0389 (16)	-0.0007 (12)	0.0046 (12)	-0.0013 (11)
C19	0.0358 (14)	0.0326 (13)	0.0288 (13)	-0.0023 (11)	0.0075 (11)	-0.0012 (10)
C20	0.0406 (15)	0.0419 (15)	0.0373 (16)	0.0048 (12)	0.0062 (12)	0.0008 (12)
C21	0.0460 (18)	0.063 (2)	0.0484 (19)	0.0104 (16)	0.0003 (15)	0.0069 (15)
C22	0.056 (2)	0.083 (3)	0.0423 (19)	-0.0044 (19)	-0.0149 (16)	-0.0008 (17)
C23	0.066 (2)	0.058 (2)	0.046 (2)	-0.0099 (17)	0.0002 (17)	-0.0156 (15)

Atomic displacement parameters $(Å^2)$

<i>Geometric parameters</i>	(Å,	%	

0.0456 (16)

0.078 (3)

C24

C25

Mn1—O2	2.1219 (18)	C6—C7	1.408 (3)
Mn1—O2 ⁱ	2.1219 (18)	С7—С8	1.394 (3)
Mn1—O3	2.1552 (17)	C8—C9	1.408 (3)

0.0355 (15)

0.058 (2)

-0.0026 (13)

0.0072 (16)

0.0052 (13)

0.0164 (19)

0.0369 (14)

0.0341 (16)

-0.0046 (11)

-0.0045 (14)

Mn1—O3 ⁱ	2.1552 (17)	C8—H8A	0.9300
Mn1—O4	2.1971 (19)	C10—H10A	0.9300
Mn1—O4 ⁱ	2.1971 (19)	C11—C12	1.478 (4)
F1—C6	1.365 (3)	C11—C13	1.488 (4)
O1—C1	1.247 (3)	C11—H11A	0.9800
OW1—HW1A	0.84 (3)	C12—C13	1.491 (5)
OW1—HW1B	0.84 (3)	C12—H12A	0.9700
O2—C1	1.259 (3)	C12—H12B	0.9700
O3—C3	1.263 (3)	C13—H13A	0.9700
O4—C18	1.234 (3)	С13—Н13В	0.9700
O5—C18	1.264 (4)	C14—C15	1.510 (4)
O6—C25	1.268 (5)	C14—H14A	0.9700
О6—Н6	0.85 (4)	C14—H14B	0.9700
O7—C25	1.210 (4)	C15—H15A	0.9700
N1—C15	1.480 (3)	C15—H15B	0.9700
N1—C16	1.485 (3)	C16—C17	1.513 (3)
N1—H1A	0.9000	C16—H16A	0.9700
N1—H1B	0.9000	C16—H16B	0.9700
N2—C7	1.396 (3)	C17—H17A	0.9700
N2—C17	1.466 (3)	С17—Н17В	0.9700
N2—C14	1.475 (3)	C18—C19	1.514 (4)
N3—C10	1.346 (3)	C19—C20	1.395 (4)
N3—C9	1.402 (3)	C19—C24	1.413 (4)
N3—C11	1.460 (3)	C20—C21	1.369 (4)
C1—C2	1.511 (3)	C20—H20A	0.9300
C2—C10	1.360 (3)	C21—C22	1.376 (5)
C2—C3	1.433 (3)	C21—H21A	0.9300
C3—C4	1.455 (3)	C22—C23	1.375 (5)
C4—C9	1.392 (3)	C22—H22A	0.9300
C4—C5	1.405 (3)	C23—C24	1.402 (4)
C5—C6	1.349 (3)	С23—Н23А	0.9300
С5—Н5А	0.9300	C24—C25	1.508 (4)
$O2-Mn1-O2^{i}$	180.00 (9)	C12—C11—C13	60.4 (2)
O2—Mn1—O3	82.19 (7)	N3—C11—H11A	115.1
O2 ⁱ —Mn1—O3	97.81 (7)	C12—C11—H11A	115.1
O2—Mn1—O3 ⁱ	97.81 (7)	C13—C11—H11A	115.1
O2 ⁱ —Mn1—O3 ⁱ	82.19 (7)	C11—C12—C13	60.2 (2)
O3—Mn1—O3 ⁱ	180.0	C11—C12—H12A	117.8
O2—Mn1—O4	88.72 (8)	C13—C12—H12A	117.8
O2 ⁱ —Mn1—O4	91.28 (8)	C11—C12—H12B	117.8
O3—Mn1—O4	91.37 (7)	C13—C12—H12B	117.8
O3 ⁱ —Mn1—O4	88.63 (7)	H12A—C12—H12B	114.9
$O2-Mn1-O4^{i}$	91.28 (8)	C11—C13—C12	59.5 (2)
$O2^{i}$ —Mn1—O4 ⁱ	88.72 (8)	С11—С13—Н1ЗА	117.8
$Mn1-Q4^{i}$	88.63 (7)	C12—C13—H13A	117.8
$O3^{i}$ Mn1 $O4^{i}$	91 37 (7)	C11—C13—H13B	117.8
05 min-07	· · · · · · · · · · · · · · · · · · ·		

O4—Mn1—O4 ⁱ	180.0	С12—С13—Н13В	117.8
HW1A—OW1—HW1B	109.7 (18)	H13A—C13—H13B	115.0
C1—O2—Mn1	131.15 (16)	N2—C14—C15	109.5 (2)
C3—O3—Mn1	124.73 (15)	N2—C14—H14A	109.8
C18—O4—Mn1	143.4 (2)	C15-C14-H14A	109.8
С25—О6—Н6	113 (4)	N2-C14-H14B	109.8
C15—N1—C16	110.5 (2)	C15-C14-H14B	109.8
C15—N1—H1A	109.6	H14A—C14—H14B	108.2
C16—N1—H1A	109.6	N1-C15-C14	108.8 (2)
C15—N1—H1B	109.6	N1—C15—H15A	109.9
C16—N1—H1B	109.6	C14—C15—H15A	109.9
H1A—N1—H1B	108.1	N1—C15—H15B	109.9
C7—N2—C17	116.8 (2)	C14—C15—H15B	109.9
C7—N2—C14	116.2 (2)	H15A—C15—H15B	108.3
C17—N2—C14	110.8 (2)	N1—C16—C17	111.6 (2)
C10—N3—C9	118.7 (2)	N1—C16—H16A	109.3
C10—N3—C11	120.4 (2)	С17—С16—Н16А	109.3
C9—N3—C11	120.1 (2)	N1—C16—H16B	109.3
O1—C1—O2	123.1 (2)	C17—C16—H16B	109.3
O1—C1—C2	116.9 (2)	H16A—C16—H16B	108.0
O2—C1—C2	120.0 (2)	N2—C17—C16	110.2 (2)
C10—C2—C3	119.2 (2)	N2—C17—H17A	109.6
C10—C2—C1	117.3 (2)	С16—С17—Н17А	109.6
C3—C2—C1	123.5 (2)	N2—C17—H17B	109.6
O3—C3—C2	125.5 (2)	С16—С17—Н17В	109.6
O3—C3—C4	119.4 (2)	H17A—C17—H17B	108.1
C2—C3—C4	115.2 (2)	O4—C18—O5	121.3 (3)
C9—C4—C5	118.2 (2)	O4—C18—C19	118.4 (2)
C9—C4—C3	122.3 (2)	O5-C18-C19	120.3 (2)
C5—C4—C3	119.4 (2)	C20-C19-C24	118.1 (3)
C6—C5—C4	119.9 (2)	C20—C19—C18	114.3 (2)
С6—С5—Н5А	120.0	C24—C19—C18	127.6 (2)
С4—С5—Н5А	120.0	C21—C20—C19	122.5 (3)
C5—C6—F1	117.4 (2)	C21—C20—H20A	118.7
C5—C6—C7	123.8 (2)	C19—C20—H20A	118.7
F1—C6—C7	118.8 (2)	C20—C21—C22	119.7 (3)
C8—C7—N2	123.0 (2)	C20—C21—H21A	120.2
C8—C7—C6	116.3 (2)	C22—C21—H21A	120.2
N2—C7—C6	120.7 (2)	C23—C22—C21	119.4 (3)
С7—С8—С9	120.7 (2)	C23—C22—H22A	120.3
С7—С8—Н8А	119.7	C21—C22—H22A	120.3
С9—С8—Н8А	119.7	C22—C23—C24	122.2 (3)
C4—C9—N3	118.7 (2)	C22—C23—H23A	118.9
C4—C9—C8	120.8 (2)	C24—C23—H23A	118.9
N3—C9—C8	120.4 (2)	C23—C24—C19	118.0 (3)
N3—C10—C2	125.6 (2)	C23—C24—C25	113.7 (3)
N3—C10—H10A	117.2	C19—C24—C25	128.3 (3)
C2C10H10A	117.2	O7—C25—O6	120.4 (4)
N3—C11—C12	121.0 (3)	O7—C25—C24	118.3 (4)

N3—C11—C13	119.2 (3)	O6—C25—C24	121.3 (3)
$O2^{i}$ —Mn1—O2—C1	-97 (100)	C5—C4—C9—C8	4.6 (4)
O3—Mn1—O2—C1	31.5 (2)	C3—C4—C9—C8	-176.3 (2)
$O3^{i}$ —Mn1—O2—C1	-148.5 (2)	C10—N3—C9—C4	1.5 (3)
O4—Mn1—O2—C1	-60.0 (2)	C11—N3—C9—C4	171.6 (2)
$O4^{i}$ —Mn1—O2—C1	120.0 (2)	C10—N3—C9—C8	-178.7 (2)
02 - Mn1 - 03 - C3	-36.48 (19)	C11—N3—C9—C8	-8.6(4)
$\Omega^{2^{i}}$ Mn1 Ω^{3} Ω^{3}	143 52 (19)	C7—C8—C9—C4	-2.5(4)
	-147(100)	C7 C8 C0 N2	177.7(2)
03 - Mn1 - 03 - C3	-147(100)	$C_{1} = C_{0} = C_{1} = C_{1}$	1/1.7(2)
04—Mii1—03—C3	52.0 (2)	$C_{9} = N_{3} = C_{10} = C_{2}$	-4.1 (4)
O4 ¹ —Mn1—O3—C3	-128.0 (2)	C11—N3—C10—C2	-174.2 (3)
O2—Mn1—O4—C18	39.5 (3)	C3—C2—C10—N3	1.5 (4)
$O2^{1}$ —Mn1—O4—C18	-140.5 (3)	C1—C2—C10—N3	179.1 (2)
O3—Mn1—O4—C18	-42.7 (3)	C10—N3—C11—C12	-114.2 (3)
O3 ⁱ —Mn1—O4—C18	137.3 (3)	C9—N3—C11—C12	75.8 (3)
O4 ⁱ —Mn1—O4—C18	-161 (100)	C10-N3-C11-C13	-43.1 (4)
Mn1—O2—C1—O1	167.0 (2)	C9—N3—C11—C13	146.9 (3)
Mn1—O2—C1—C2	-14.3 (4)	N3-C11-C12-C13	108.3 (3)
O1—C1—C2—C10	-12.1 (4)	N3-C11-C13-C12	-111.2 (3)
O2—C1—C2—C10	169.1 (2)	C7—N2—C14—C15	-162.5 (2)
O1—C1—C2—C3	165.3 (2)	C17—N2—C14—C15	61.0 (3)
O2—C1—C2—C3	-13.4 (4)	C16—N1—C15—C14	58.7 (3)
Mn1—O3—C3—C2	26.7 (3)	N2-C14-C15-N1	-61.2 (3)
Mn1—O3—C3—C4	-153.29 (17)	C15—N1—C16—C17	-55.8 (3)
C10—C2—C3—O3	-176.6 (2)	C7—N2—C17—C16	167.0 (2)
C1—C2—C3—O3	5.9 (4)	C14—N2—C17—C16	-56.8 (3)
C10—C2—C3—C4	3.4 (3)	N1—C16—C17—N2	54.2 (3)
C1—C2—C3—C4	-174.0 (2)	Mn1—O4—C18—O5	-95.6 (4)
O3—C3—C4—C9	174.2 (2)	Mn1—O4—C18—C19	85.7 (4)
C2—C3—C4—C9	-5.8 (3)	O4—C18—C19—C20	10.4 (4)
O3—C3—C4—C5	-6.8 (3)	O5—C18—C19—C20	-168.3 (3)
C2—C3—C4—C5	173.2 (2)	04—C18—C19—C24	-170.2 (3)
C9—C4—C5—C6	-1.9(4)	05	11.1 (5)
C3—C4—C5—C6	179.0 (2)	C24—C19—C20—C21	-0.1(4)
C4 - C5 - C6 - F1	1/4.8 (2)	C18 - C19 - C20 - C21	1/9.4 (3)
C4 - C5 - C6 - C7	-3.2(4)	C19 - C20 - C21 - C22	1.2 (5)
C1/-N2-C7-C8	3.5 (4)	$C_{20} = C_{21} = C_{22} = C_{23}$	-0.8(5)
$C_{14} N_{2} C_{7} C_{8}$	-130.4(3)	$C_{21} = C_{22} = C_{23} = C_{24}$	-0.8(6)
$C_{1/-N_{2}} - C_{7} - C_{8}$	-173.9(2)	$C_{22} = C_{23} = C_{24} = C_{19}$	-1784(3)
$C_{1} = N_{2} = C_{1} = C_{0}$	52.5 (5) 5 3 (4)	$C_{22} = C_{23} = C_{24} = C_{23}$	-14(4)
$E_{1}^{-} = C_{0}^{-} = C_{0}^{-} = C_{0}^{-}$	-1727(2)	$C_{20} = C_{19} = C_{24} = C_{23}$	1.4(4) 170 2 (3)
11 - 00 - 07 - 00	-1772(2)	$C_{10} - C_{10} - C_{24} - C_{25}$	178.9(3)
F1 - C6 - C7 - N2	4 8 (4)	$C_{18} - C_{19} - C_{24} - C_{25}$	-0.5(5)
N2-C7-C8-C9	-179 8 (2)	C_{23} C_{24} C_{25} C_{23}	-8.7(5)
C6—C7—C8—C9	-2.4(4)	C19 - C24 - C25 - O7	171.0 (3)
C5-C4-C9-N3	-175 6 (2)	C_{23} C_{24} C_{25} C_{26}	171 3 (4)
			- / (-)

C3—C4—C9—N3 Symmetry codes: (i) $-x, -y, -z+1$.	3.5 (4)		C19—C24—C25—O6		-9.0 (6)
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
OW1—HW1B···O5		0.84 (3)	2.43 (3)	3.108 (4)	139 (4)
N1—H1A····O7 ⁱⁱ		0.90	1.82	2.717 (3)	174.
N1—H1B…O1 ⁱⁱⁱ		0.90	1.79	2.688 (3)	173.
N1—H1B····O2 ⁱⁱⁱ		0.90	2.60	3.246 (3)	130.
OW1—HW1A····O3 ⁱ		0.84 (3)	2.12 (1)	2.937 (3)	164 (4)
O6—H6…O5		0.85 (4)	1.53 (4)	2.379 (4)	175 (8)
Symmetry codes: (ii) $x+1/2$, $-y+1/2$, $z+1/2$; (iii) $x+1$, y , $z+1$; (i) $-x$, $-y$, $-z+1$.					

Fig. 2